Задания по физике 10 класс (экстернат). 2012-2013 учебный год

учитель: Емельянов Андрей Юрьевич e-mail: emelyanovau@mail.ru

Автор учебника Мякишев Г.Я., Буховцев Б.Б., Сотский Н. Н.Физика классический курс: Учеб. Для 10 кл. общеобразовательных учреждений. – М.: Просвещение, 2010.

Сборники задач: Физика. Задачник. 10-11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А.П. – 7-е изд., стереотип. – М.: Дрофа, 2003.

Требования к уровню подготовки учащихся:

В результате изучения физики на базовом уровне ученик должен Знать/понимать

- Смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие,
- Смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- Смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики,
- Вклад российских и зарубежных ученых, оказавших значительное влияние на развитие физики.

Уметь

- Описывать и объяснять физические явления и свойства тел: движение небесных тел и ИСЗ, свойства газов, жидкостей и твердых тел;
- Отличать гипотезы от научных теорий, делать выводы на основе экспериментальных данных, приводить примеры, показывающие, что наблюдения и эксперименты являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов, физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще не известные явления;
- Приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике;
- Воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

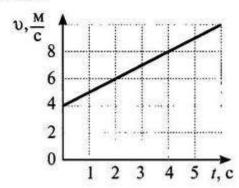
- Обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
- Оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
- Рационального природопользования и защиты окружающей среды.

Контрольные работы

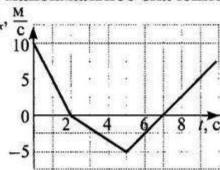
При выполнении работы учащиеся вносят ответы на вопросы части А в таблицу для ответов; решение задач части В приводят в полном объеме.

Проверка работ:

- каждый правильный ответ части А оценивается 1 баллом (всего 7 баллов);
- каждое верное соответствие в задании В8 оценивается в 1 балл (всего 4 балла);
- в задачах В9, В10 полное верное решение оценивается в 2 балла, в случае ошибок в математических расчетах 1 балл, при неверном решении 0 баллов (всего 4 балла);

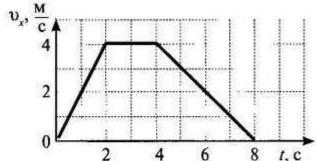

Максимальный балл работы базового уровня составляет 15 баллов.

Оценка работ:


Оценка	«2»	«3»	«4»	«5»
Базовый уровень	менее 8 баллов	8—10 баллов	11 — 13 баллов	14, 15 баллов

КИНЕМАТИКА

- 1. Плот равномерно плывет по реке со скоростью 6 км/ч. Человек движется поперек плота со скоростью 8 км/ч. Чему равна скорость человека в системе отсчета, связанной с берегом?
 - 1) 10 km/y
 - 2) 7 км/ч
 - 3) 14 км/ч
 - 4) 2 KM/4
- 2. Используя график зависимости скорости движения тела от времени, определите скорость тела в конце 7-ой секунды, считая, что характер движения тела не изменится.
 - $1) 8 \, \text{M/c}$
 - 2) 11 m/c
 - 3) 16 m/c
 - 4) 18 m/c


- 3. На рисунке представлена зависимость проекции скорости тела от времени. Модуль ускорения имеет максимальное значение на участке
 - 1) от 0 с до 2 с
 - 2) от 2 с до 5 с
 - 3) от 2 с до 7 с
 - 4) ускорение на всех участках одинаково

- 4. Зависимость пути от времени для прямолинейно движущегося тела имеет вид: $S(t) = 2t + t^2$, где все величины выражены в СИ. Ускорение тела равно
 - 1) 1 M/c^2
 - 2) 2 M/c^2
 - 3) 3 M/c^2
 - 4) 6 M/c^2
- 5. На рисунке представлен график зависимости проекции скорости тела от времени. Какой путь прошло тело за интервал времени от 2 до 8 с?

- 2) 20 M
- 3) 16 м
- 4) 8 M

- 6. Тело упало с некоторой высоты с нулевой начальной скоростью и при ударе о землю имело скорость 40 м/с. Чему равно время падения? Сопротивлением воздуха пренебречь.
 - 1) 0,25 c
 - 2) 4 c
 - 3) 40 c
 - 4) 400 c
- 7. Материальная точка движется по окружности с постоянной скоростью. Как изменится центростремительное ускорение точки, если скорость увеличить в 2 раза и радиус окружности увеличить в 2 раза?
 - 1) уменьшится в 2 раза
 - 2) увеличится в 2 раза
 - 3) увеличится в 4 раза
 - 4) уменьшится в 8 раз

8. Используя условие задачи, установите соответствия величин из левого столбца таблицы с их соотношениями в правом столбце.

Две материальные точки равномерно движутся по окружностям с радиусами R_1 и $R_2 > R_1$, не меняя взаимного расположения относительно друг друга.

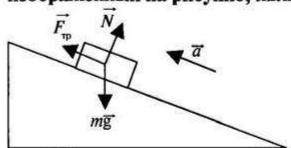
Величина	Изменение	
А. угловая скорость	1) у первой больше,	
	чем у второй	
Б. центростремительное	2) у первой меньше,	
ускорение	чем у второй	
В. период обращения	3) одинаковы	
по окружности		
Г. частота обращения		
по окружности		

- 9. Тело свободно падает с высоты 45 м. Чему равна скорость тела у поверхности земли?
- 10. Мотоциклист и велосипедист одновременно начинают равноускоренное движение из состояния покоя. Ускорение мотоциклиста в 3 раза больше, чем ускорение велосипедиста. Во сколько раз больше времени понадобится велосипедисту, чтобы достичь скорости 50 км/ч?

ДИНАМИКА

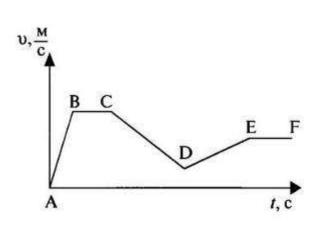
- 1. Самолет летит по прямой с постоянной скоростью на высоте 9км. Систему отсчета, связанную с Землей, считать инерциальной. В этом случае:
 - 1) на самолет не действуют никакие силы
 - 2) на самолет не действует сила тяжести
 - 3) сумма всех сил, действующих на самолет равна нулю
 - 4) сила тяжести равна силе Архимеда, действующей на самолет
- 2. На тело массой 1 кг действуют силы 6 Н и 8 Н, направленные перпендикулярно друг другу. Чему равно ускорение тела?
 - 1) 2 M/c^2
 - 2) 5 M/c^2
 - 3) 10 m/c^2
 - 4) 14 m/c^2
- 3. Спутник массой т движется вокруг планеты по круговой орбите радиуса R. Масса планеты M. Какое выражение определяет значение скорости движения спутника?
 - 1) $G \frac{M}{R}$

 - 2) $\sqrt{G\frac{m}{R^2}}$ 3) $\sqrt{G\frac{M}{R}}$
 - 4) $G\frac{m}{R^2}$


4. К пружине длиной 10 см, коэффициент жесткости которой 500 Н/м, подвесили груз массой 2 кг. Какой стала длина пружины?

- 1) 12 cm
- 3) 14 cm
- 2) 13 cm
- 4) 15 cm

5. Человек вез ребенка на санках по горизонтальной дороге. Затем на санки сел второй такой же ребенок, но человек продолжал движение с той же постоянной скоростью. Как изменилась сила трения при этом?


- 1) не изменилась
- 3) уменьшилась в 2 раза
- 2) увеличилась в 2 раза 4) увеличилась на 50 %

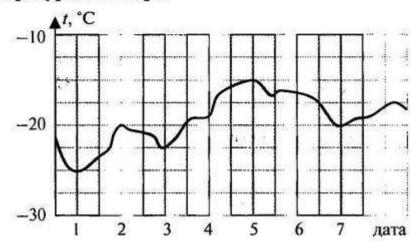
6. По наклонной плоскости вниз скользит брусок. Какой вектор, изображенный на рисунке, является лишним или неправильным?

- 2) mg

7. Модуль скорости автомобиля массой 1000 кг изменяется в соответствии с графиком, приведенном на рисунке. Какое утверждение верно?

- 1) на участке ВС автомобиль двигался равномерно 2) на участке DE автомобиль
- двигался равноускоренно, вектор ускорения направлен противоположно вектору скорости
- 3) на участке АВ автомобиль двигался равномерно
- 4) модуль ускорения на участке АВ меньше модуля ускорения на участке DE

8. Используя условие задачи, установите соответствия уравнений из левого столбца таблицы с их графиками в правом столбце.

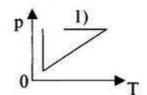

Три тела одинаковой массы по 3 кг каждое совершали движения. Уравнения проекции перемещения представлены в таблице. На каком графике представлена зависимость проекции силы от времени, действующей на каждое тело?

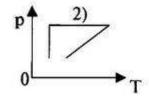
Уравнение		График	
A.	$S_x = 2t$	1.	F_x 0 T_x
Б.	$S_x = 4t - 3t^2$	2.	F_x 0 -18
B. <i>S</i> _x	S - 54 242	3.	
	$S_x = 5t + 3t^2$	4.	F_x 18 0

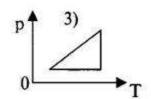
- 9. Подвешенное к тросу тело массой 10 кг поднимается вертикально. С каким ускорением движется тело, если трос жесткостью 59кH/м удлинился на 2 мм? Какова сила упругости, возникающая в тросе?
- 10. Средняя высота спутника над поверхностью Земли 1700 км. Определить скорость его движения.

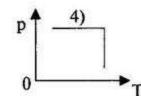
МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ

- 1. Диффузия в твердых телах происходит медленнее, чем в газах так как
 - 1) молекулы твердого тела тяжелее, чем молекулы газа
 - 2) молекулы твердого тела больше, чем молекулы газа
- молекулы твердого тела менее подвижны, чем молекулы газа
- молекулы твердого тела взаимодействуют слабее, чем молекулы газа.
- 2. Как изменилось давление идеального газа, если в данном объеме скорость каждой молекулы удвоилась, а концентрация молекул осталась без изменения?
 - 1) увеличилось в 4 раза
 - 2) увеличилось в 2 раза
 - 3) не изменилось
 - 4) уменьшилось в 4 раза
- 3. На рисунке представлен график изменения температуры воздуха в январе. Пользуясь графиком, определите максимальное значение абсолютной температуры 2 января.
 - 1) -20 °C
 - 2) 253 K
 - 3) 293 K
 - 4) 253 K

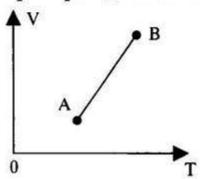

4. Абсолютная температура газа увеличилась в 2 раза. Средняя кинетическая энергия поступательного движения молекул


- 1) увеличилась в 2 раза
- 2) уменьшилась в 2 раза
- 3) увеличилась в 4 раза
- 4) уменьшилась в 4 раза


5. Абсолютная температура и объем одного моля идеального газа увеличились в 3 раза. Как изменилось при этом давление газа?


- 1) увеличилось в 3 раза
- 2) увеличилось в 9 раза
- 3) уменьшилось в 3 раза
- 4) не изменилось

6. Идеальный газ сначала нагревался при постоянном давлении, потом его давление уменьшалось при постоянном объеме, затем при постоянной температуре давление газа увеличилось до первоначального значения. Какой из графиков в координатах р—Т соответствует этим изменениям состояния газа?



7. Как изменится давление данного количества идеального газа при переходе из состояния A в состояние B

- 1) увеличится
- 2) уменьшится
- 3) не изменится
- 4) ответ неоднозначен

8. Используя условие задачи, установите соответствия величин из левого столбца таблицы с их изменениями в правом столбце.

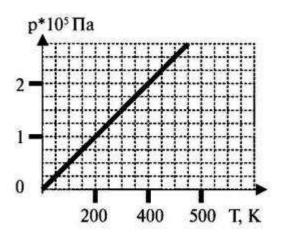
На аэрозольном баллончике написано: «...беречь от попадания прямых солнечных лучей и нагрева выше 50 °С...». Это требование обусловлено тем, что при нагревании...

А. масса газа

1) увеличивается

Б. температура газа

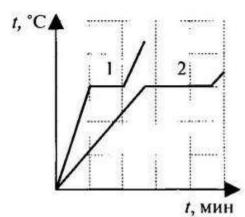
2) уменьшается

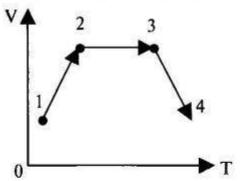

В. давление газа

3) не изменяется

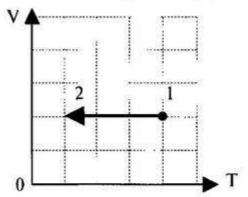
Г. объем газа

Решите задачи.


9. На рисунке изображена изохора водорода (двухатомный газ). Какому объему газа она соответствует, если масса водорода 8 кг? Ответ округлите до целых.


10. Давление в откаченной рентгеновской трубке при 15°C равно 1,2 МПа. Какое будет давление в работающей трубке при температуре 80°C?

ТЕРМОДИНАМИКА


- 1. Воздух в комнате состоит из смеси газов: водорода, кислорода, азота, водяных паров, углекислого газа и др. Какой из физических параметров этих газов обязательно одинаков при тепловом равновесии?
 - 1) давление
 - 2) температура
 - 3) концентрация
 - 4) плотность
 - 2. Внутренняя энергия идеального газа определяется
 - 1) кинетической энергией хаотического движения молекул
- 2)потенциальной энергией взаимодействия молекул друг с другом
- 3) кинстической энергией хаотического движения молекул и потенциальной энергией их взаимодействия
 - 4) скоростью движения и массой тела
- 3. На рисунке представлены графики процессов плавления двух тел, сделанных из одинакового вещества. Что можно сказать об этих телах?
 - 1) температура плавления тела 1 больше, чем у тела 2
 - 2) удельная теплоемкость тела 1 больше, чем у тела 2
 - 3) масса тела 1 больше, чем у тела 2
 - 4) удельная теплота плавления тела 1 больше, чем у тела 2

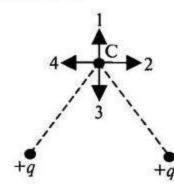
4. Газ последовательно перешел из состояния 1 в состояние 2, а затем в состояния 3 и 4. Работа газа равна нулю

- на участке 1-2
- 2) на участке 2-3
- 3) на участке 3-4
- 4) на участках 1-2 и 3-4
- 5. Газ совершил работу 400 Дж, и при этом его внутренняя энергия уменьшилась на 100 Дж. В этом процессе газ
 - 1) получил количество теплоты 500 Дж
 - 2) получил количество теплоты 300 Дж
 - 3) отдал количество теплоты 500 Дж
 - 4) отдал количество теплоты 300 Дж
- 6. На VT диаграмме представлен процесс изменения состояния идеального одноатомного газа. При переходе из состояния 1 в состояние 2 газ отдал 80 кДж теплоты. Внутренняя энергия этого газа

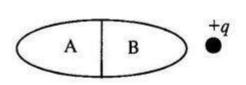
- 1) увеличилась на 80 кДж
- 2) уменьшилась на 80 кДж
- 3) увеличилась на 40 кДж
- 4) уменьшилась на 40 кДж
- 7. Тепловая машина с КПД 50% за цикл работы отдает холодильнику 100 Дж энергии. Какое количество теплоты за цикл машина получает от нагревателя?
 - 1) 200 Дж
 - 2) 150 Дж
 - 3) 100 Дж
 - 4) 50 Дж

8. Используя условие задачи, установите соответствия величин из левого столбца таблицы с их изменениями в правом столбце.

При адиабатном сжатии газа...

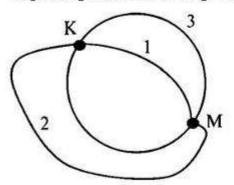

Величина	Изменение	
А. давленис	1) увеличивается	
Б. внутренняя энергия	2) уменьшается	
В. объем	3) не изменяется	
Г. температура		

- 9. Объем постоянной массы идеального одноатомного газа увеличился при постоянном давлении 500 кПа на 0,03 м³. На сколько увеличилась внутренняя энергия газа?
- 10. Вода падает с высоты 1200 м. На сколько повысится температура воды, если на ее нагревание затрачивается 60% работы силы тяжести?


ЭЛЕКТРОСТАТИКА

- 1. Легкий незаряженный шарик из металлической фольги подвешен на тонкой шелковой нити. При поднесении к шарику стержня с положительным электрическим зарядом (без прикосновения) шарик
 - 1) притягивается к стержню
 - 2) отталкивается от стержня
 - 3) не испытывает ни притяжения, ни отталкивания
- 4) на больших расстояниях притягивается к стержню, на малых расстояниях отталкивается
- 2. От водяной капли, обладавшей зарядом +q, отделилась капля с электрическим зарядом — q. Каким стал заряд оставшейся капли?
 - 1) +2a
- 2) + a
- 3) -q
- 4) -2a
- 3. Модуль силы взаимодействия между двумя неподвижными точечными заряженными телами равен F. Чему станет равен модуль этой силы, если увеличить заряд одного тела в 3 раза, а второго — в 2 раза?
 - 1) 5F 2) $\frac{1}{5}F$ 3) 6F

- 4. Какое направление имеет вектор напряженности электрического поля двух одинаковых точечных зарядов в точке С?
 - 1) 1
 - 2) 2
 - 3)3
 - 4)4



5. Незаряженное металлическое тело внесено в электрическое поле положительного заряда, а затем разделено на части A и В. Какими электрическими зарядами будут обладать части тела A и В после разделения?

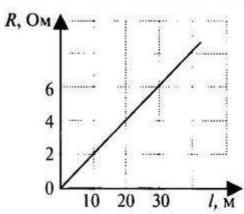
- A положительным,
- В отрицательным
- 2) А отрицательным,
- В положительным
- 3) А и В останутся нейтральными
- 4) А и В положительными

6. Из точки М на поверхности заряженной металлической сферы электрический заряд может быть перемещен в точку К по трем различным траекториям: 1 — внутри сферы, 2 — вне сферы, 3 — по поверхности сферы. По какой траектории при перемещении заряда работа электрического поля будет наименьшей?

- 1) по траектории 1
- 2) по траектории 2
- 3) по траектории 3
- 4) по все траекториям работа одинакова
- 7. Как изменится электроемкость плоского воздушного конденсатора при уменьшении расстояния между его пластинами в 2 раза и введении между пластинами диэлектрика с диэлектрической проницаемостью, равной 4?
 - 1) увеличится в 8 раз
 - 2) увеличится в 2 раза
 - 3) уменьшится в 2 раза
 - 4) не изменится

8. Используя условие задачи, установите соответствия величин из левого столбца таблицы с их изменениями в правом столбце.

Плоский воздушный конденсатор зарядили до некоторой разности потенциалов и отключили от источника тока. При увеличении площади перекрывания пластин конденсатора...

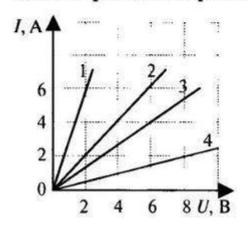

17220
1) увеличивается
2) уменьшается
3) не изменяется

- 9. Вычислите работу сил электрического поля при перемещении заряда 5Кл между точками с разностью потенциалов 10 В.
- 10. Два заряда по 4·10⁻⁸ Кл, разделенные слоем слюды, взаимодействуют с силой 5·10⁻² Н. Определить толщину диэлектрика, если его диэлектрическая проницаемость равна 8. Ответ выразить в мм.

постоянный электрический ток

ЧАСТЬ А Выберите один верный ответ.

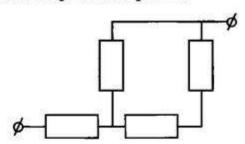
1. На рисунке показана зависимость сопротивления проводника площадью сечения 1 мм² от его длины. Чему равно удельное электрическое сопротивление вещества, из которого сделан проводник?



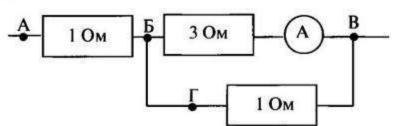
- 1) 20 Om·mm²/m
- 2) 5 Om·mm²/m
- 3) 0,5 Ом·мм²/м
- 4) 0,2 Om·mm²/m

2. Как изменится сила тока, проходящего через проводник, если увеличить в 2 раза напряжение между его концами, а площадь сечения проводника уменьшить в 2 раза?

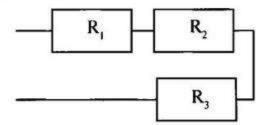
- 1) не изменится
- 2) уменьшится в 2 раза
- 3) увеличится в 2 раза
- 4) увеличится в 4 раза


3. На рисунке изображены графики зависимости силы тока в четырех проводниках от напряжения на их концах. Сопротивление какого проводника равно 4 Ом?

- 1) проводника 1
- 2) проводника 2
- 3) проводника 3
- 4) проводника 4


4. На участке цепи, изображенном на рисунке, сопротивление каждого резистора равно 3 Ом. Общее сопротивление участка равно

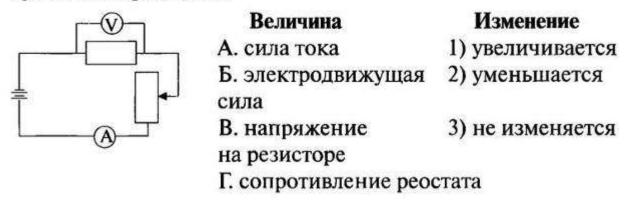
- 1) 12 Om
- 2) 5 OM
- 3) 3,5 OM
- 4) 2 Om


5. В цепи, изображенной на рисунке амперметр показывает силу тока 1 А. К каким точкам нужно подключить вольтметр, чтобы его показания были равны 4 В?

- 1) AB
- 2) **BB**
- 3) **Б**Г
- 4) AB

6. Три резистора сопротивлениями $R_1 = 10$ Ом, $R_2 = 6$ Ом и $R_3 = 3$ Ом соединены в цепь как показано на рисунке. На каком резисторе выделится наибольшее количество теплоты

- 1) на первом
- на втором
- 3) на третьем
- 4) на всех одинаково



7. ЭДС источника равна 8В, внешнее сопротивление 3 Ом, внутреннее сопротивление 1 Ом. Сила тока в полной цепи равна

- 1) 32 A
- 2) 25 A
- 3) 2A
- 4) 0,5 A

8. Используя условие задачи, установите соответствия величин из левого столбца таблицы с их изменениями в правом столбце.

В цепи, изображенной на рисунке, ползунок реостата передвинули вниз. При этом ...

- 9. В электроприборе за 15 мин электрическим током совершена работа 9 кДж. Сила тока в цепи 2 А. Определите сопротивление прибора.
- 10. Электрическая цепь состоит из двух резисторов сопротивлением по 4 Ом соединенных последовательно, источника тока с ЭДС 30 В и внутренним сопротивлением 2 Ом. Определить силу тока в цепи.